В предыдущей работе [1] мы впервые показали, что известный противопухолевой агент — тиотэф (N,N',N''-триэтилиамфосфамид, I) реагирует с dGMP. Основными направлениями этой модификации является алкилирование фосфатной группы нуклеотида с образованием дифосфата. Кроме того, было установлено, что тиотэф алкилирует dGMP в положении 7. Однако первичные продукты модификации выделены и охарактеризованы не были, так как использованный в работе [1] метод анализа предусматривал расщепление введенного в молекулу dGMP заместителя. Изменения в методиках проведения реакции dGMP с тиотэфом и переход к более мягкому способу разделения продуктов реакции — анионобменной хроматографии на DEAE-цеплюлозе — позволили выделить первичные продукты реакции dGMP с тиотэфом и охарактеризовать их. Разработанный метод был применен затем к анализу продуктов реакции и других канонических нуклеотидов с тиотэфом, а также позволил выделить и впервые описать продукты реакции нуклеотидов с этилинированием.

Реакцию нуклеотидов с тиотэфом проводили при 37°С в течение 2 ч в воде при pH 6,2—6,5 и после удаления избытка тиотэфа массу фракционировали на DEAE-цеплюлозе (рис. 1). Обращает на себя внимание тот факт, что объем элюции основного продукта реакции нуклеотидов с тиотэфом мало зависит от природы основания в нуклеотиде (фракция 2, объем элюции 400—430 мл). Выход его не зависит от природы основания и составляет 1,2%. Это означает, что продукты образуются в результате однотипной модификации исходного нуклеотида тиотэфом, и, учитывая результаты нашего предыдущего сообщения [1], можно полагать, что такой модификацией является этерификация фосфатной группы нуклеотида с образованием дифосфата (II)
Рис. 1. Хроматография на DEAE-целлюлозе продуктов реакции тиотафа с дCMP, TMP, AMP (a) и dGMP, GMP (b). Условия элюции описаны в «Экспер. частиц: 1 — фракции, в которых элюируются примеси соответствующего нуклеозида, продукты не-установленного строения и полимеры тиотафа; 2 — фракция эфиров нуклеозидов; 3 — продукт алькилирования гуанинов нуклеозидов по основанию; 4 — исходный нуклеозид.

Это предположение было доказано следующими спектральными и химическими данными.

УФ-спектры соединений (I) при pH 1,7 и 13 не отличаются от УФ-спектров соответствующих нуклеозидов, связанных в тех же условиях. Соединение (IIa) гидролизуется 0,1 н. HCl, а соединения (IIб) и (IIв) — 1 н. HCl (100 °C, 1 ч) с образованием гуанина и аденина соответственно. Так как в указанных условиях гидролиза не алкилируются алкилиглукозиды и алкилиаденины (кроме O6-алкилированных гуаниновой кислоты, УФ-спектр которых отличается от спектра исходного нуклеозида) стабильны, исход, что введенный заместитель находится в сахарофосфатной части молекулы.

В ИМП-спектрах соединений (I) кроме сигналов от протонов исходного нуклеозида присутствует мультиплет сигналов протонов двух этилен-иминных групп с δ 1,86 м.д. и сигналы от двух связанных между собой метиленовых групп (δ 3,01 и 3,57 м.д., 3JHH 6,0 Hz), причем методом двойного резонанса установлено, что обе они связаны спин-спиновыми взаимодействием с атомами фосфора. Учитывая данные работы [1], можно заключить, что сигнал с δ 3,01 м.д., 3JHH 12,1 Гц, приналежит метиловой группе, расположенной близи атома фосфора тиофосфатной группы, а сигнал с δ 3,57 м.д., 3JHH 6,1 Гц — метиленовой группе, связанной с нуклеотидной фосфатной группой. Следует отметить, что протоны этой метиленовой группы неэквивалентны. Например, в соединении (Ia) разность в химических сдвигах этих протонов достигает 0,07 м.д. и вместо одного мултиплета в спектре в области 3,57 м.д. наблюдается два симметричных мультиплета. В спектрах остальных соединений этого ряда такая разность неэквивалентность этих протонов, но она менее выражена.

Полностью соответствуют приведенным на схеме формулам продуктов реакции (I) также их вторично-эмиссионные масс-спектры, полученные при ионизации быстрыми атомами аргона (3,6 кэВ). В спектрах всех соединений (I) имеется пик молекулярного иона с m/z = M + 1, где M равно сумме молекулярных масс нуклеозида и тиотафа и, кроме того, во всех случаях присутствует ион с m/z = 288, отвечающий продукту, который образуется из молекулярного иона в результате разрыва связи между фосфатной группой и нуклеозидом.
Подробно закономерности фрагментации соединений этого ряда будут обсуждены в отдельном сообщении.

Аналогично было доказано строение продуктов алкилирования dGMP и GMP по положению 7 гуанинового цикла (IІІа) элюирующихся с DEAE-целлюлозы позднее дизферов (IІ), но ранее исходного нуклеотида (рис. 1). Выход соединений (IІІа) равен 0,7%.

IІІа: R=2'-дезоксирiboозил-5'-фосфат; IІІб: рибозил-5'-фосфат.

По данным вторично-эмиссионной масс-спектрометрии, молекулярная масса соединений (IІІ) равна сумме молекулярных масс исходного нуклеотида и тиотэфа. Их УФ-спектр отличен от УФ-спектра GMP и dGMP, что указывает на присоединение тринитрилтрифосфамидной группы к основанию; в ПМР-спектре (в D₂O) отсутствует сигнал протона Н₈ гуанинового цикла вследствие быстрого обмена этого протона на дейтерий из растворителя — типичное свойство N₇-замещенных производных гуаниозина, вытекающее из наличия положительного заряда на атоме азота в этих соединениях [2]. В согласии с формулами (IІІ), по данным ПМР, введенный заместитель имеет две этиленминовые группы (мультиплэт с δ 1,80 м. д.) и две связанные между собой метилиевые группы (мультиплэты вследствие неэквивалентности протонов в них, δ 3,42 и 3,43 м. д., 3JH-H 5,2, 3JH-H 9,8 Гц, константы 2JH-H в соединении (IІІа) составляют 12 и 9,8 Гц соответственно).

При действии 0,1 М HCl (100°С, 1 ч) соединение (IІІа) превращается в продукт, строение которого установлено не было, но для нашей работы существенно, что его УФ-спектр при трех различных рН не отличается от УФ-спектра 7-метилгуменина, снятого в тех же условиях. Известно, что УФ-спектры 7-алкилзамещенных гуанина не зависят от природы заместителя [3]. Вероятно, соединение (IІІа) гидролизуется в указанных условиях с образованием свободного основания, но, кроме того, происходит неизвестная нам модификация заместителя; поскольку продукт имеет характерный спектр 7-замещенного гуанина, это доказывает структуру соединения (IІІа) как 7-замещенного производного dGMP.

Таким образом, проведенное исследование подтвердило результаты нашего предварительного сообщения [1] и показало, что основным центром модификации тиотэфом в нуклеотидах является фосфатная группа. Кроме того, в dGMP и GMP тиотэф алкилирует остаток гуанина в положении 7; алкилирования других оснований в нуклеотидах мы не обнаружили.

Способами ли кроме тиотэфа и другие производные этиленимина алкилировать фосфатную группу в нуклеотидах? Для ответа на этот вопрос мы исследовали реакцию нуклеотидов с этиленимином при 37°C и рН среды 6,2—6,5 в течение 2 ч. Продукты реакции разделяли тем же методом, что и продукты реакции нуклеотидов с тиотэфом, — ионообменной хроматографией на DEAE-целлюлозе.

Картину разделения продуктов реакции этиленимина с GMP (рис. 2) (профили элюции продуктов реакции этиленимина с другими нуклеотидами подобны, но в них отсутствует пик 3) аналогична приведенной на рис. 1 с той разницей, что пик 2 имеет объем элюции не 400, а приблизительно 200 мл и элюируется водой вскоре после выхода свободного объема колонки. Этот факт сразу указывает на возможную структуру продукта в пике 2 как аминоэтиловых эфиров нуклеотидов (IV):

\[
\text{H}_2\text{NCH}_2\text{CH}_2\text{OH} + \text{NH}_2\rightarrow \text{H}_2\text{NCH}_2\text{CH}_2\text{OH}
\]

IVa: R=OH; B=Gua
IVb: R=H; B=Thy
IVc: R=OH; B=Ade

Действительно, р\(K_0\) кислотной диссоциации дизамещенной фосфатной группы равен приблизительно 1, р\(K_a\) первой аминогруппы — 10; следовательно, аминоэтиловые эфиры нуклеотидов при физиологических значениях рН являются цитрат-ионами и суммарный заряд их молекулы равен нулю. Поэтому объем элюции этих соединений с DEAE-целлюлозы лишь незначительно превышает свободный объем колонки.

Рехроматография на сефадексе G-10 (элюция водой) соединения (IV) очищали от примеси солей, выходящих в свободном объеме колонки, и от небольшого количества неидентифицированных примесей. Выход соединений (IV) составляет 8,7 %. Строение соединений (IV) доказывают, во-первых, вторично-эмиссионные масс-спектры, в которых присутствуют линии с \(m/z = M + 1\), где \(M\) равно сумме молекулярных масс исходного нуклеотида и этиленимина, и пик осколочного иона с \(m/z = 142\) (молекулярная масса β-аминэтилового эфира фосфорной кислоты + Н\(^+\), см. выше). Во-вторых, со структурой (IV) согласуются и ПМР-спектры соединений, в которых кроме сигналов протонов исходного нуклеотида присутствуют сигналы от двух связанных между собой метilenовых групп, одна из которых связана спин-спиновым взаимодействием с атомом фосфора (в D\(_2\)O, мультиплет с щелочным спектром, \(J_{H-H} = 5,4 — 6,6\) Гц; \(J_{P-H} = 3,4 — 6,6\) Гц и тритлет
с 3,00 м. д.). В-третьих, соединения (IVa) и (IVb) количественно гидролизуются соляной кислотой соответственно до гуанина и аденина и, следовательно, не содержат заместителя в остатке основания. Таким образом, этиленимин действительно способен алкилировать фосфатную группу в нуклеотидах с образованием их β-аминоэтилэфиров.

На примере соединений (IIд), (IVa) и (IVb) оценена стабильность эфиров нуклеотидов. Фосфодиэфирная связь в соединениях (IIд) в водном растворе не расщепляется при 100°С за 20 мин. Не расщепляется она и при инкубации этого эфира в трис-НС1-буфере с рН 7,18—8,95 при 37°С в течение 1 ч. 0,1 М НС1 или 0,1 М NaOH за 2 ч при 37°С гидролизует соединение (IIд) на 30 и 50% соответственно, причем продуктом гидролиза является нуклеотид, а образования тимидина при гидролизе обнаружить не удалось. Высокая стабильность эфиров в нейтральной среде подтверждена и в опытах с соединениями (IVa) и (IVb), которые в 0,1 М фосфатном буфере с рН 6,2 при 20°С стабильны по крайней мере 3 сут.

Специального обсуждения заслуживают также свойства нуклеотидов и нуклеозидов, модифицированных этиленимином и его производными в остатке основания. Вышеупомянутые соединения (III) являются 7-аминоэтильными производными dGMP и dCMP, имеющими электроположительный N,N'-диэтилдиаминфосфатный заместитель в аминогруппе. Они достаточно стабильны в щелочной среде, и их можно выделить хроматографией на DEAE-целлюлозе при рН 7. Соответствующие соединения при реакциях этиленимина с нуклеотидами получать не удалось. Вместо них с колонками экстрагировались соединения неустановленного строения (фракции 3, рис. 2). Этот результат не является неожиданным. Известно, что этиленимин алкилирует Guo и dGuo в положении 7, и что образующиеся 7-аминоэтильные производные нуклеозидов экстремально нестабильны и в щелочной среде разлагаются в результате раскрытия имидазольного цикла (5). Этилэтильные производные более стабильны. Вероятно, образующиеся при реакции этиленимина с GMP и dGMP 7-аминоэтильные производные разлагаются при хроматографии на DEAE-целлюлозе. Таким образом, из сравнения свойств 7-замещенных циклических нуклеотидов и нуклеозидов следует, что экстремальная нестабильность их 7-аминоэтильных производных в щелочной среде обусловлена нуклеофильными свойствами незамещенной аминогруппы.

Обнаруженная способность тиотаэфа алкилировать остаток основания в dGMP побудила нас исследовать возможность аналогичной модификации в составе ДНК. Для этого мы воспользовались люминесцентным методом (6) и нашли, что действительно после модификации тиотаэфа ДНК поглощает люминесценцию (рис. 3) и параметры люминесценции соответствуют тем, которые наблюдались при люминесценции 7-алкилированного dGMP (4); следовательно, тиотаэф способен алкилировать ДНК в положении 7 остатков гуанина.

Таким образом, в изложенной работе нами установлено строение продуктов модификации нуклеотидов тиотаэфом и этиленимином и показано, что тиотаэф способен алкилировать основания в ДНК. Полученные результаты полностью подтверждают высказанное нами в работе [1] предположение о механизме биологического действия соединений этого класса.
<table>
<thead>
<tr>
<th>Соединение</th>
<th>Колонка</th>
<th>Способ очистки</th>
<th>элюент</th>
<th>объем удерживания, мл</th>
</tr>
</thead>
<tbody>
<tr>
<td>П1а</td>
<td>Separon</td>
<td>A</td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>П1б</td>
<td>Lichrosorb</td>
<td>A</td>
<td></td>
<td>2,1</td>
</tr>
<tr>
<td>П1в</td>
<td>Separon</td>
<td>B</td>
<td></td>
<td>10,6</td>
</tr>
<tr>
<td>П1д</td>
<td>Lichrosorb</td>
<td>B</td>
<td></td>
<td>4,6</td>
</tr>
<tr>
<td>П1е</td>
<td>Separon</td>
<td>B</td>
<td></td>
<td>4,1</td>
</tr>
<tr>
<td>П1ж</td>
<td>Lichrosorb</td>
<td>B</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>П1з</td>
<td>Separon</td>
<td>B</td>
<td></td>
<td>4,9</td>
</tr>
<tr>
<td>П1и</td>
<td>Lichrosorb</td>
<td>A</td>
<td></td>
<td>2,7</td>
</tr>
<tr>
<td>П1к</td>
<td>Separon</td>
<td>B</td>
<td></td>
<td>5,9</td>
</tr>
<tr>
<td>П1л</td>
<td>Lichrosorb</td>
<td>B</td>
<td></td>
<td>4,0</td>
</tr>
<tr>
<td>П1м</td>
<td>Servachrom</td>
<td>B</td>
<td></td>
<td>3,6</td>
</tr>
<tr>
<td>IVа</td>
<td>Servachrom</td>
<td>B</td>
<td></td>
<td>3,8</td>
</tr>
<tr>
<td>IVб</td>
<td>Servachrom</td>
<td>B</td>
<td></td>
<td>3,5</td>
</tr>
</tbody>
</table>

Примечание. Элюент A — 5% водный ацетонитрил, B — 10% водный ацетонитрил.

Экспериментальная часть

Спектры UV-ЯМР снимали на приборе WH-360 (Bruker, ФРГ) с рабочей частотой 360 МГц. В качестве внутреннего стандарта использовали D2O (0,460 м. д.). Точность измерения химических сдвигов 0,01 м. д., константа спин-спинового взаимодействия — 0,1 Гц. Величина химических сдвигов определялась как центр мультиплетов, при отнесении сигналов к определенным протонам используя протонный магнитный двойной резонанс. УФ-спектры сняты на приборе Specord UV-Vis (ГДР), вторично-эмиссионные масс-спектры — на приборе МИ-1201, оборудованном для вторичного-эмиссионного измерения. Спектры люминесценции сняты на спектрофотометре «Зори» отечественного производства под углом 90° при возбуждении люминесценции спектром с длиной волны 360 нм. Проточный девиатором для одновременного контроля электропроводности и постепенно элюатов при жидкостной хроматографии — отечественного производства. ВЗХХ проводили на хроматографе ХГ 130 с колонками (4,6 × 250 мм, 5 мм) Servachrom Si 100; polyol RP18 (Serva) и Lichrosorb RP18 (Mojnar, ФРГ) в Separor Six C18 (3,2 × 300 мм, 5 мм, ЧССР).

В работе использовали ДЕАЭ-целлюлозу, высокоподвижная ДПК из аэрогелей, dGMP и AMP (Benal), сефадекс G-10 (Pharmacia); GMP, dCMP в ТМР (НИИТИ БАВ, Бердск), тиофено (отечественное производство), NH4HCO3 получены по способу [7].

Жидкостную хроматографию проводили на колонке (36 × 2,3 см) с ДЕАЭ-целлюлозой в ПСО47-форме. Элюцию осуществляли водой, затем градиентом концентрации NH4HCO3 (смеситель — 200 мл воды, резервуар — 200 мл 0,2 M NH4HCO₃, рН 8) и 0,5 M NH4HCO₃ с рН 8. Скорость элюции 1,5 мл/мин. Фракции нейтрализовали и упаривали при 40° C/20 мм рт. ст. до объема ~ 1 мл. Для очистки и обессоливания их рехроматографировали либо на колонке (36 × 1,6 см) с сефадексом G-10 с элюцией водой, либо на обратно-фазовой колонке, указанной выше (элюент — 5 или 10% водный ацетонитрил, см. таблицу).

Реакция нуклеотидов с 5′-дитиофосфатом. Растор 0,28 ммоль дитиофосфата растворяли в 2,8 мл воды, добавленными 3 M HCl доводили рН до 6,0—6,1 и инкубировали 2 ч при 37° C; рН в конце инкубации 6,15—6,25. Если использовали нуклеотид в виде свободной кислоты, то 0,28 ммоль нуклеотида растворяли в 2,8 мл воды, добавленными 3 M NaOH доводили рН до 6,1, прибавляли тиофосфат и инкубировали при 37° C. После окончания экстракции экстрагировали бензолом (3 × 2 мл) и упаривали до объема 1-1,5 мл при 40° C/20 мл рт. ст. Объем доводили водой до 2,8 мл и хроматографировали на ДЕАЭ-целлюлозе. Реакция нуклеотидов с этиленгликолем. 0,1 ммоль нуклеотида и 1,0 ммоль этиленгликола растворяли в 4 мл воды, рН смеси доводили 3 M HCl до 6,0—6,1, инкубировали 2 ч при 37° C (рН в конце инкубации 6,2—6,3), упаривали на водяном паре при 40° C/20 мл рт. ст. до объема 1—2 мл и остаток фракционировали на ДЕАЭ-целлюлозе.
Гидролиз соединений (IIa)—(IIb), (IIIa), (IVa) и (IVb) соляной кислотой. Фракции, содержащие ~ 0.4 ммоль очищенного соединения, уваривали в вакууме досуха, растворяли в 2 мл 0,1 или 1 M HCl, выдерживали 1 ч при 100°С, нейтрализовали и выделяли продукт гидролиза гель-фильтрацией на сефадексе G-10. Идентичность продукта гидролиза с основанием-свидетелем устанавливали параллельной ТСХ на силуфоле в системах пропанол — конц. NH₃ (3:2 по объему) и ацетонитрил — этилацетат — изопропанол — n-бутанол — конц. NH₃ (40:30:20:10:30 по объему).

Стабильность эфиров нуклеотидов. 5,0 — 10 ОЕ соединения (Пд), (IVa) или (IVb) растворяли в 1—2 мл 0,1 М HCl (или в воде, или в 0,1 М NaOH), выдерживали определенное время при желаемой температуре, после чего раствор при необходимости нейтрализовали и анализировали методом ВЭЖХ.

Модификация ДНК тиотэфом. К 3 мл раствора ДНК (0,64 мг/мл) в буфере (0,15 м NaCl и 0,015 М цитрат натрия) добавляли 22,7 мг тиотеф, растворенного в том же буфере. Молярное отношение тиотеф — РДНК в полученном растворе 20 : 1. Смесь выдерживали 4 ч при 37°С, после чего снимали спектры люминесценции.

ЛИТЕРАТУРА

Поступила в редакцию 21.VII.1986
После доработки 2.X.1988

THE STRUCTURE OF THE PRODUCTS OF NUCLEOTIDES AND DNA MODIFICATION BY ETHYLENIMINE AND THIO-TEPA

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow

Previously undescribed products of dGMP, GMP, AMP, dCMP and TMP aminoethylolation by ethylenimine and Н,N',N'- triethylenetriphosphamide (thio-TEPA) have been obtained and shown to be aminoethyl esters of nucleotides with the free or substituted amino group. In case of dGMP and GMP ethylenimine and thio-TEPA alkylate not only phosphate but also the base residue at the N7 position. The 7-aminoethyl derivatives of dGMP and GMP, which thio-TEPA afforded, were characterized whereas the corresponding ethylenimine derivatives are decomposed under alkaline conditions in the course of the isolation. Possible reasons of extreme instability of these compounds are given. For the first time the ability of thio-TEPA to alkylate DNA at position 7 of guanine residue is shown by means of the luminescence method.