СЕЛЕКТИВНАЯ АМПЛИФИКАЦИЯ ЭВОЛЮЦИОННО КОНСЕРВАТИВНЫХ ЭКСПРЕССИРУЮЩИХСЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

© 1996 г. К. А. Лукьянов, Н. Г. Гурская, Е. П. Кошанцев, С. А. Лукьянов
Институт биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова РАН,
117871, Москва, ул. Миклухо-Маклая, 16/10
Поступила в редакцию 04.04.95 г.

Предложен эффективный метод клонирования последовательностей, общих для двух образцов ДНК. Метод используется для создания библиотеки экспрессирующихся последовательностей, эволюционно консервативных для человека и хомячка. На основе анализа выборки клонов показано, что полученная библиотека содержит практически 100% высоко консервативных клонов.

Ключевые слова: библиотека ДНК, общие последовательности, клонирование, полимеразная цепная реакция, эволюционная консервативность, человек, хомячок.

В настоящее время опубликовано лишь несколько работ по клонированию последовательностей, общих для двух образцов ДНК [1 - 3]. Все они направлены на анализ геномной ДНК с целью поиска хромосомоспецифических последовательностей [1, 2] или идентификации эволюционно консервативных районов на данном участке хромосомы [3]. В данной работе описан метод получения библиотеки экспрессирующихся последовательностей, общих для двух образцов биологического материала. Метод использован для выявления эволюционно консервативных последовательностей ДНК.

Предложенный метод основан на эффекте селективного ингибитирования полимеразной цепной реакции (ПЦР), который был впервые использован в нашей предыдущей работе для создания высокоэффективного метода вычитания гибридизации ДНК [4]. Этот эффект состоит в ингибитировании амплификации молекул ДНК, фланкированных инвертированными концевыми повторами (Inverted Terminal Repeats – ITR), в ПЦР с примером, соответствующим внешней части ITR, при условии, что длина примера значительно меньше длины ITR (рис. 1). Этот факт объясняется следующим образом. На каждом цикле ПЦР после денатурации в процессе охлаждения образца внутримолекулярная гибридизация ITR (самоотжиг) происходит раньше, чем отжиг примера, поскольку температура самоотжига ITR выше температуры отжига примера. Только небольшая часть молекул ДНК достигает температуры отжига примера без формирования структуры типа "сковородки", закрывающей сайт позджки примера. Те молекулы, на которые пример все-таки отжегся, после синтеза ДНК

Значение ITR (самоотжиг) происходит раньше, чем отжиг примера, поскольку температура самоотжига ITR выше температуры отжига примера. Только небольшая часть молекул ДНК достигает температуры отжига примера без формирования структуры типа "сковородка", закрывающей сайт позджки примера. Те молекулы, на которые пример все-таки отжегся, после синтеза ДНК

Автор для переписки.

Рис. 1. Схема эффекта ингибирования амплификации молекул ДНК, фланкированных ITR, в ПЦР с примером, соответствующим внешней части ITR. Толщина стрелок отражает количество молекул ДНК, участвующих в данном процессе.
СЕЛЕКТИВНАЯ АМПЛИФИКАЦИЯ

Аmplифицированная кДНК HeLa

Денатурация, отжиг, синтез

Удаление праймеров

Смещивание, денатурация, ренатурация

Достройка 3'-концов двухцепочной ДНК

Гомодуплексы

Гетеродуплексы

Нет достройки

ITR

ITR

PCR-амплификация с праймерами 24-1 () и 24-2 ()

Ингибитирование амплификации

Экспоненциальная амплификация

Линейная амплификация

Клонирование и анализ

Рис. 2. Схема процедуры клонирования консервативных последовательностей. Прямоугольники на концах молекул кДНК обозначают последовательности праймеров, фланкирующих эти молекулы, а также комплементарные им последовательности. Белый прямоугольник соответствует T-праймеру; черный - 5'-концевой части LT1-праймера, а также праймеру 24-1, заштрихованный - 5'-концевой части LT2-праймера, а также праймеру 24-2.

В методе, описанном ниже, в общие (высоко-консервативные) для двух изучаемых образцов молекулы кДНК вводятся некомпллементарные друг другу 3'- и 5'-концевые части, позволяющие вести амплификацию с соответствующих праймеров, в то время как низко консервативные последовательности получают ITR и их амплификация блокируется.

Метод был применен для поиска экспрессирующихся последовательностей, консервативных для человека и хомяка. В качестве клеточных образцов были взяты клеточная линия HeLa и клеточная линия фибробластов китайского хомяка. Для поиска консервативных экспрессирующихся последовательностей мы использовали кДНК-копии мРНК, амплифицированные с помощью PCR как описано нами ранее [5]. Синтез образцов амплифицированной кДНК включал следующие этапы: а) синтез первой цепи кДНК с
При построении гибридизации плаэмидной ДНК клонов CC1 - CC20 с биотиновинченной кДНК человека (а) и хомяка (б).

Порядок расположения клонов на фильтрах показан справа (в).

олиго(dT)-содержащего праимера (Т-праймер); б) присоединение к первой цепи кДНК oligo(dA)-последовательности с помощью концевой дезоксинуклеотидилтрансферазы; в) PCR с Т-праймером.

Каждая из целей полученных таким образом двухцепочечных молекул кДНК с одной стороны была фланкирована последовательностью Т-праймера, а с другой - комплементарной этому праймеру последовательностью. Дальнейшие этапы предлагаемой методики изображены на рис. 2. Сначала в результате одного цикла PCR с длинным Т-праймером (LT-праймером) была получена кДНК, имеющая на одном конце каждой цепи последовательность LT-праймера, а на другом - последовательность, комплементарную Т-праймеру. LT-праймер приблизительно в 2 раза длиннее Т-праймера, и его 3'-концевая часть повторяет последовательность Т-праймера. В два сравниваемых образца кДНК были введены два разных LT-праймера (LT1 и LT2), различающихся своей 5'-концевой частью. Затем была проведена денатурация и совместная репанкетирование образцов. В процессе репанкетирования молекулы кДНК могли: 1) оставаться в одноцепочной форме; 2) образовывать дуплекс с молекулой из своего образца (гомодуплекс); 3) образовать дуплекс с молекулой из другого образца (гетеродуплекс). Для высоко-консервативных молекул скорость образования гомо- и гетеродуплексов практически равны. Чем меньше степень гомологии между молекулами из разных образцов, тем ниже скорость их гибридизации. Следовательно, низконуклеотидные последовательности преимущественно образовывали гомодуплексы, что привело к обогащению фракции гетеродуплексов высоко консервативными молекулами.

Далее 3'-концы двуцепочечных молекул кДНК были достроены с помощью Taq-полимеразы, после чего кДНК была амплифицирована в PCR с 24-звенные праимерами 24-1, 24-2, идентичными 5'-концевым частям праймеров LT1 и LT2. Из рис. 2 видно, что после достройки 3'-концов обе цепи гомодуплексов оказались фланкированы ITR (последовательности LT1- или LT2-праймера и им комплементарные). Четыре гетеродуплексы имели некомплментарные друг другу 3' и 5'-концы, позволяющие амплифицировать такие молекулы. Поскольку молекулы с ITR образуют структуры типа "сковородка", блокирующие их амплификацию, в результате PCR был получен образец амплифицированной кДНК, обогащенный высоко консервативными последовательностями, который затем был клонирован в вектор pTZ18R по Sall-сайте.

Консервативность 20 случайно выбранных клонов (названных CC1 - CC20) была оценена с помощью сравнительной дот-гибридизации (рис. 3). В качестве зондов была использована амплифицированная кДНК человека (а) и хомяка (б), меченная биотином; на фильтры наносили плаэмидную ДНК из клонов. Как видно из рис. 3, большинство клонов дают гибридизационные сигналы приблизительно равной интенсивности, что указывает на высокую степень гомологии этих последовательностей у человека и хомяка. Для оценки эффективности предлагаемого метода отбора консервативных последовательностей был проведен более подробный анализ тех клонов, которые по результатам дот-гибридизации выглядели наименее консервативными. Вставки из пяти клонов (CC1, CC4, CC16, CC18 и CC19), которые давали большую разницу в гибридизационных сигналах, были частично или полностью секвенированы, и полученные последовательности были проанализированы с помощью пакета программ "Fasta" EMBL Data Library.

Результаты анализа показали, что два клона (CC16 и CC18) содержат фрагменты 3'-концевой некодирующей области (3' Untranslated Region - 3'UTR) кДНК гистона H3.3. Полученные последовательности, по-видимому, принадлежат кДНК хомяка, поскольку отличаются от зарегистрированных последовательностей гистона H3.3.
СЕЛЕКТИВНАЯ АМПЛИФИКАЦИЯ

EST человека [8]
CC1
EST мыши [9]
мРНК PABP мыши [11]
CC4
мРНК PABP человека [10]
EST мыши [12]
EST человека [13]
CC19
мРНК Rap 1B белка мыши [14]

100%
94%
92%
100%
100%
93%
94%
100%

100 п. о.

Рис. 4. Сравнение последовательностей фрагментов кДНК из клонов CC1, CC4 и CC19 с соответствующими последовательностями человека и грызунов. Белые прямоугольники обозначают отсеквенированные участки изолированных нами клонов; заштрихованные — последовательности человека; серые — последовательности грызунов. Тонкие вертикальные или наклонные линии соединяют участки ДНК, для которых указан процент гомологии.

человека [6]. Эволюционная консервативность 3'UTR гистона H3.3 в целом высока: более 97% гомологии между различными видами млекопитающих [7] и 85% гомологии между человеком и цыпленком [6].

Ближайшие гомологи фрагментов кДНК из клонов CC1, CC4 и CC19 схематически показаны на рис. 4. Вставка в клон CC1 своими разными частями оказались гомологичной экспрессирующимся последовательностям (Expressed Sequence Tag — EST) человека [8] и мыши [9] на 100 и 94% соответственно. Анализ последовательностей CC1 и EST человека на наличие открытой рамки считывания показал, что большая часть клона CC1 содержала некодирующую последовательность (3'UTR) и только 45 п. о. из 308 могли принадлежать кодирующей области.

Клон CC4 содержал 3'UTR (цепиком) и два последних нуклеотида стоп-кодона кодирующей части кДНК poly(A)-связывающего белка (Poly(A)-Binding Protein — PABP) человека [10]. мРНК этого белка из мыши и человека гомологичны на 92% в 3'UTR, однако 3'UTR мышьяного транскрипта значительно короче [11]. Существование EST мыши [12], на 93% гомологичной дистальной части 3'UTR мРНК PABP человека, позволяет предполагать наличие у мышей и более длинных транскриптов гена этого белка.

Клон CC19 содержал фрагмент кДНК человека (100% гомология с EST человека [13]), высоко-гомологичный дистальный части 3'UTR мРНК белка Rap1B из крысы [14]. Так, один конец вставки клона CC19 был гомологичен крысиной последовательности на 94%, а другой — на 87%.

Относительно низкий процент гомологии второго конца связан с наличием небольшой вставки (11 п. о.) в человеческой кДНК. По обе стороны от вставки гомология составляет 90 и 95%.

Таким образом, 5 секвенированных клонов (наименее консервативных по данным дот-гибридизации) содержали фрагменты кДНК, в основном имеющие более 90% гомологии между соответствующими последовательностями человека и грызунов. Опираясь на данные дот-гибридизации, можно заключить, что остальные 15 клонов содержат столь же или даже более консервативные фрагменты кДНК. Даже среди высококонсервативных 3'UTR, рассматриваемых в обзоре [15], такой процент гомологии на протяжении участков встречается редко. Разница в гибридизационных сигналах (см. рис. 3), по-видимому, объясняется разным уровнем экспрессии данных генов в анализированных клеточных линиях.

Человек и грызуны дивергировали в процессе эволюции около 75 млн. лет назад [15]. Показано, что эволюционно нейтральные последовательности ДНК изменяются со скоростью приблизительно 1% за 1 млн. лет, что соответствует всего 52% гомологии через 75 млн. лет [15]. Консервативность 3'UTR, наблюдаемая у многих генов, говорит о высокой функциональной значимости этого района. В настоящее время роль 3'UTR активно изучается, и для некоторых транскриптов показано, что 3'UTR принимает участие в регуляции транскрипции, деградации и внутриклеточной локализации мРНК [обзор 16]. Обычно поиск консервативных участков ДНК ведется путем сравнения уже известных последовательностей, принадлежащих различным организмам. Наша
методика может применяться для обнаружения новых консервативных и, следовательно, функционально важных, экспрессирующихся последовательностей путем их селективного клонирования.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Выделение суммарной РНК. Образцы клеточных культур HeLa и фиброblastов китайского хомячка (по 5 × 10⁶ клеток) суспендировали в 200 мл лицирующего буфера (4 М гуанидинийцитоциннат; 30 mM ацетат натрия, pH 7.0; 0.5% саркозина). После интенсивного встряхивания на воротках добавляли 160 мл уравновешенного дисульфированной водой фенола и 160 мл смеси хлороформ-изомаловый спирт (24 : 1). После интенсивного встряхивания смесь центрифугировали при 12000г 10 мин, переносили водную фазу в новую пробирку. Экстракцию смеси фенола с хлороформом (1 : 1) проводили 3 раза до исчезновения интерфазы. К водной фазе добавляли 2.5 объема этанола. Затем, после выдерживания пробирки в течение 2 ч при -20°C, центрифугировали при 12000г 20 мин. Осадок РНК растворяли в 200 мл воды и использовали для синтеза кДНК.

В нашей работе были использованы следующие олигонуклеотидные прямые (5' - 3'):

1. T-пример	AGCACTTCTCCAGCTTCTCACCAGTGACGCTTACCG	GCGACTGCGACCG(T)₁₃
2. LT1-пример	ACCGACGTGGACTTATCCATGAAAGCCGACGTCAGCGCCGAAGG	ACCTCCCTTCGCTTCACCCCAAG
3. LT2-пример	AGCTCACCCGCGCTTGCACCCGCA	AGCCGACGGATCATGATGAAG
4. 24-1-пример	AGCTCACCCGCGCTTGCACCCGCA	ACCTCCCTTCGCTTCACCCCAAG
5. 24-2-пример	AGCTCACCCGCGCTTGCACCCGCA	ACCTCCCTTCGCTTCACCCCAAG

Синтез первой цепи кДНК проводили в соответствии со стандартным протоколом (Amersham) в объеме 30 мл в присутствии 20 пмоль T-прямера в качестве затравки. На реакцию брали по 3 мкт тотальной РНК.

Присоединение олиго(dA)-последовательности к первой цепи кДНК. Образцы первой цепи кДНК дважды осаждали этанолом для удаления нуклеозидтрифосфатов. 0.3 мкт первой цепи кДНК инкубировали с 10 ед. акт. терминальной дезоксинуклеотидтрансферазы в 20 мл буфера для этого фермента (Promega) в присутствии 200 мкМ dATP при 37°C в течение 15 мин.

Амплификация топографической кДНК проводили в 50 мл смеси для PCR (67 мМ трис-НCl, рН 8.3; 17 мМ сульфат аммония; 3 мМ хлорид магния; 0.01% бычий сывороточный альбумин; dNTP (250 мкМ каждого; 1 ед. акт. Taq-полимеразы), содержащей 0.4 мкМ T-пример и 15 нг кДНК с предыдущей стадии. PCR проводили на приборе DNA Thermal Cycler (Perkin–Elmer–Cetus) в следующем режиме: денатурация ДНК – 92°C, 15 с, отжиг прямых – 60°C, 15 с, синтез ДНК – 72°C, 2 мин; 20 циклов. Далее образцы осаждали этанолом.

Введение в кДНК последовательностей длинных T-примеров. К 2 мкт кДНК человека и хомячка, амплифицированной с T-примером, добавляли по 75 мл смеси для PCR, содержащей 1 мкМ прямой LT1 или LT2 соответственно, и проводили 1 цикл PCR (94°C, 30 с; 60°C, 30 с; 72°C, 2 мин). Далее образцы очищали от прямеров с помощью Wizard PCR Prep DNA Purification System (Promega).

Гибридизация и последующая амплификация кДНК. По 0.5 мкт полученных на предыдущей стадии топографически сбалансированных водой фенола и 160 мл смеси хлороформ-изомаловый спирт (24 : 1). После интенсивного встряхивания смесь центрифутировали при 12000г 10 мин, переносили водную фазу в новую пробирку. Экстракцию смеси фенола с хлороформом (1 : 1) проводили 3 раза до исчезновения интерфазы. К водной фазе добавляли 2.5 объема этанола. Затем, после выдерживания пробирки в течение 2 ч при -20°C, центрифугировали при 12000г 20 мин. Осадок РНК растворяли в 200 мл воды и использовали для синтеза кДНК.

ДНК человека и хомячка смешивали, осаждали этанолом и растворяли в 1 мкт гибридизационного буфера (50 мМ HEPESS, рН 7.5; 0.5 М NaCl; 0.1% SDS; 15 мкт T-пример). Затем гибридизационную смесь закрыли минеральным маслом, прогреяли 2 мин при 100°C и инкубировали 16 ч при 68°C. К репликатированной кДНК добавляли 400 мл буфера (10 мМ трис-НCl, рН 7.0, с 50 мМ NaCl). К 1 мл полученной кДНК добавляли 50 мл смеси для PCR, не содержащей хлорид магния и Taq-полимеразу, и нагревали до 72°C, после чего добавляли хлорид магния до 3 мМ, 1 ед. акт. Taq-полимеразы, прямые 24-1 и 24-2 до концентрации каждого 0.3 мкМ и провели 30 циклов PCR (92°C, 15 с; 72°C, 2 мин).

Клонирование кДНК, обогащенной консервативными последовательностями. Полученный на предыдущей стадии образец амплифицированной кДНК был обработан эндонуклеазной рестрикции Sall (сайт узнавания для этого фермента присутствует в T-прямере) и клонирован в вектор pTZ18R. Протокол рестрикции, лigationa, трансформации компетентных клеток E. coli DH5α и выделения плазмидной ДНК были проведены в соответствии со стандартными протоколами [17].

Анализ клонов. Плазмидную ДНК из 20 случайно выбранных клонов наносили на нитроцеллюлозные фильтры Hybond-N (Amersham) (по 200 нг в точку) и гибридизовали с образцами Biotin-11-dUTP-меченных амплифицированных кДНК клеточных культур HeLa и фиброblastов китайского хомячка. Гибридизацию проводили при 68°C в стандартном буфере [17], фильтры отмывали при 68°C в 0.2 × SSC (1 × SSC – 150 мМ
NaCl, 15 mM цитрат натрия) с 0.1% SDS. Мечение кДНК и окрашивание фильтров осуществляли в соответствии со стандартными протоколами [17].

Авторы выражают глубокую благодарность Е.Д. Свердлову за критическое обсуждение результатов, Е.А. Богдановой и М.В. Матцу за помощь в подготовке и оформлении статьи, а также В.К. Потапову за синтез олигонуклеотидных праймеров.

СПИСОК ЛИТЕРАТУРЫ

Selective Amplification of Evolutionarily Conserved Expressed Sequences

K. A. Luk’yanov, N. G. Gurskaya, E. P. Kopantsev, and S. A. Luk’yanov1

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Mikiukho-Maklaya 16/10, V-437, GSP-7, Moscow, 117871 Russia

Abstract—An efficacious method of cloning the sequences common for two cDNAs was proposed. The method was used for constructing a library of expressed sequences evolutionarily conserved for human and hamster.

Key words: cDNA library, common sequences, cloning, polymerase chain reaction, evolutionary conservation, human, hamster.

1 To whom correspondence should be addressed.